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Abstract—As the production, storage, and analysis of data
become increasingly integral to the success of modern businesses,
and as data becomes increasingly Kkaleidoscopic due to the
influx of new data sources, NoSQL (Not Only Structured Query
Language) database systems are becoming a popular choice
for data management because of their ability to quickly and
scalably handle large volumes of structured, semi-structured,
and unstructured data in a way that is friendly to developers,
and more broadly, to change. One of the solutions in this arena
is Couchbase Server, an open source database software pack-
age for building and managing distributed, document-oriented,
multi-model NoSQL databases optimized for modern interactive
applications. In this paper, we provide a detailed, two-phase
tail latency analysis of Couchbase Server Community Edition
v7.0 using a custom automated testing framework built with the
Couchbase CLI and Couchbase Python 3 SDK in combination
with the Yahoo! Cloud Serving Benchmark (YCSB), a robust
and open source framework for analyzing the performance of
different ‘“key-value” and “cloud” serving stores like Couchbase.
We analyze and report on relationships between tail latencies
and dataset sizes, request distributions, ratios between various
operation types (read/insert/update), and cluster architecture
(homogeneous versus heterogeneous service layouts).

Index Terms—Couchbase, NoSQL, YCSB, Tail Latencies,
AWS, Python

I. INTRODUCTION

Traditional relational database management systems
(RDBMS), still lingering from their introduction in the 1970s
era of mainframes and back-office business applications, are
struggling to keep up with the requirements of the current
digital era in which data grows continuously in both volume
and complexity. Designed and engineered to run on a single
server where the bigger, the better, an RDBMS is generally
scaled vertically by adding more processors, memory, and
storage, but both physics and nonlinear price increases often
make vertical scaling impractical, sometimes even impossible.
In addition, the strict consistency requirements of RDBMS
make it difficult to scale them horizontally, and inflexible
RDBMS data models, despite their provision of safety and
consistency with data management, make changing the data
model a difficult process, which is problematic in a world
of continuous change. In the digital era, the ever-changing
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structure of data that needs to be stored challenges the idea
of pre-planned, fixed schemas when building solutions that
meet long term running requirements. Consequently, the huge
amount of data generated from the internet, cell phones, social
media, and the growing Internet of Things (IoT) demands a
more modern, flexible, and scalable solution than is offered
by traditional data stores.

A. A New Wave of Data Stores

Document database systems, which store information as
documents in formats like JSON, XML, and BSON, have been
developed to address the limitation of relational database sys-
tems and provide the flexibility, performance, and scalability
required by the modern Internet and mobile applications we
are now accustomed to using. From the mid-2000s to 2020, a
steady rise in the adoption of document-oriented database tech-
nology by small startups, IT shops, and established Fortune
500 companies, is a consequence of its capacity to simplify
data management by making it a flexible part of continuous
application development [Mon21].

B. Couchbase

Couchbase, an open-source, document-oriented, multi-
model, distributed NoSQL database, lives among the new
wave of modern document database systems belonging to the
NoSQL family. By offering strong consistency guarantees,
various options for simple horizontal scaling, and impressively
high performance with latencies on the order of microseconds,
Couchbase currently stands as one of the most widely used
NoSQL solutions and is used by companies like Wells Fargo,
Tesco, eBay, and PayPal. These companies use Couchbase to
guarantee high service availability while managing massively
high-throughput processes like 1) real-time fraud monitoring
for over 50 million daily transactions (Wells Fargo), 2) catalog
scaling and inventory management for millions of products
(Tesco), 3) processing millions of user analytics updates every
minute (PayPal), and supporting about 1.3 billion live e-
commerce listings worldwide at any given moment (eBay).
[Cou2lc].



C. The Yahoo! Cloud Serving Benchmark (YCSB)

This innovative tsunami of new database technologies car-
ries with it the need for testing — more specifically, the
need for a method of comparing those technologies in a
standardized, “apples-to-apples” kind of way. After all, there
is not much advantage to a new wave of technologies if
there’s no clear way of deciding which one to use for a given
application. In 2010, the Yahoo! Cloud Serving Benchmark
(YCSB) was introduced with the stated goal of meeting that
need [Coo+10]. This project wraps standardized performance
comparisons of many of these new generation cloud data
serving systems into a simple framework that allows you
to configure and execute specific workloads against specific
target databases. The YCSB framework’s extensible design
supports easy definition of custom workloads and easy ex-
tension to new systems [Coo+10]]. Currently, the framework
supports targeted performance testing against nearly 50 data
serving systems, including but not limited to MongoDB, AWS
DynamoDB, Cassandra, Redis, CouchDB, Google BigTable,
and most importantly for this project, Couchbase.

D. Why Tail Latency?

For this research, we focus much of our analysis and
reporting on the relationship between tail latency, or high-
percentile latency, and various configurations of Couchbase
(to be described in more detail). Tail latencies, while rare by
definition, stand to have a greater impact on business relation-
ships with customers in realistic application environments than
averages and can greatly influence the user experience, thus it
is important to understand those tail latencies so they can be
reduced or avoided.

II. OVERVIEW OF COUCHBASE

In this section, we’d like to introduce some key concepts
underlying Couchbase Server and provide a foundation for the
performance evaluation in section

A. Couchbase Server

Couchbase Server refers to the actual database software
package. The package comes as two different versions: the
paid Couchbase Server Enterprise version and the free Couch-
base Server Community Edition available for download and
evaluation from the Couchbase website. In this evaluation,
Couchbase Server Community Edition 7.0.0 is used. Couch-
base also provides a CLI and a Python 3 software development
kit (SDK) which we make heavy use of for the automation of
testing.

B. Node

A Couchbase node is a physical or virtual machine that
hosts a single instance of Couchbase Server [Cou2lb]. A
node can only have one single instance of Couchbase Sever
running on it, and Couchbase keeps node management simple
by providing only a single node type, which greatly helps with
the installation, configuration, management and troubleshoot-
ing of the cluster as a whole. In this evaluation, we will

use AWS EC2 instances to host the Couchbase Server and
serve as the nodes. More specifically, we use a set of five
t2.xlarge instances, each of which come with 2 virtual CPUs,
4 gigabytes of RAM, 8 gigabytes of disk space, and low-to-
moderate network performance.

C. Cluster

A cluster contains one or more nodes, which can be added
or removed from a cluster on the fly without impacting the
performance of the cluster. Much of this evaluation revolves
around the automatic adjustment of cluster configuration to
measure its relationship with latencies of data operations.

D. Bucket

A bucket can be roughly compared to a database in tradi-
tional RDBMS terms, but instead of housing a set of tables
with columns and rows, a bucket simply houses a collection of
documents, specifically in the JSON format. There are three
types of buckets in Couchbase [[Cou21b]:

o Standard, or “Couchbase”, buckets, which are the default

and store data both in memory and persistently.

o Ephemeral buckets, which are designed for usage by

applications that do not require data persistence

o Memcached buckets, which are now deprecated — these

were originally designed for use alongside other database
platforms, even RDBMS platforms, to serve a caching
function

In this evaluation, the Standard Couchbase buckets are used
and the performance difference of bucket types is currently
beyond the scope.

E. Services

A service in Couchbase is an isolated set of processes dedi-
cated to a particular task or set of tasks [Cou21b]. Couchbase
Server breaks its functionality into a set of seven core services,
only 4 of which were relevant to and are actively used in this
evaluation:

e« The data service is used to store, set, and retrieve data
items using their keys (the hashes of which map to
specific vBuckets).

« The query service is the engine responsible for parsing
N1QL queries, where N1QL is a SQL-like query lan-
guage designed and optimized for Couchbase.

o The index service handles the creation of indexes for
use by the query service; indexes can be created to
improve query performance. This evaluation creates a
default index for each bucket which is used when testing
query operation latency.

o The search service is responsible for creating the indexes
specifically for Full Text Search (FTS) and handles
language-aware searching. The Full Text Search is one of
the specific operation types whose performance is tested
in this evaluation.

By design, these services can be deployed, maintained,

and provisioned independently of one another (for the most
part) using a framework that Couchbase documentation aliases



“multi-dimensional scaling”. There are only a few exceptional
requirements, namely 1) you must have the data service
running on at least one node, and 2) certain services are
interdependent and if running on a node, require that their
counterpart services also be running on that same node (e.g.,
query and index). A node, depending on its underlying hard-
ware, may be configured to have one or all services running on
it; this can be decided upon by the development team for the
client application, which allows for optimal use of resources
based on the known requirements of the application. Here, it
is important to note that we are using the Community Edition
of Couchbase for our evaluation, and this edition comes with
some tighter constraints on service layouts that are outlined in
more detail in subsection [V-C}

F. Architecture and Scaling

Because of the logical separation of services and the ability
to assign services to different hosts, a Couchbase cluster can
be architected in various ways — realistically many ways, ac-
tually, considering the combinatorics behind multidimensional
scaling possibilities as cluster size increases. For development
purposes, the simplest cluster architecture is a homogeneous
one in which all nodes are running the same service quotas,
as seen in Figure [T}

Fig. 1: Development Cluster Homogeneous Service Architec-

ture [The picture is from [Cou21b]]
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Corresponding to this cluster architecture is the homoge-
neous scaling methodology in which horizontal scaling simply
entails adding one or more additional nodes that run the exact
same set of services already running on each of the existing
nodes. Figure [2 illustrates this scaling methodology clearly.

A more advanced cluster architecture that is more appropri-
ate to production environments is the heterogeneous service
architecture where different nodes will have different services
running such that each node carries unique responsibilities.
For example, in certain cases, performance may be optimized
by dedicating several high-resource nodes to more critical
services like the data service or index service. Figure [3]
represents a multidimensional service layout in a Couchbase
cluster.

Fig. 2: Homogeneous Scaling [The picture is from [YN19]]
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Fig. 3: Production Cluster Heterogeneous Service Architecture

[The picture is from [[Cou21bl]
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Corresponding to this architecture is the multi-dimensional
scaling methodology, in which the addition of a new node to
the cluster involves the intentional, calculated decision about
specific services to be run on that new node for optimized
application performance. This scaling approach is highlighted
by Figure [d] Subsection[[V-C|is dedicated to an analysis of the
impact of multidimensional service scaling on tail latencies of
different operations.

G. CLI, SDK and Data Access

Couchbase provides a diverse arrangement of command-line
interface (CLI) tools to handle a bulk of the management and
monitoring of cluster infrastructure, from the cluster configu-
ration itself down to the nodes and vBuckets. Couchbase also
provides a multitude of language-specific software develop-
ment kits (SDKs) that enable developers to easily integrate
application code and logic with a Couchbase datastore. Both
the CLI and Python SDK are leveraged
in this evaluation to develop an automated testing framework.
Details are provided in section |III



Fig. 4: Multi-Dimensional Scaling [The picture is from
[YN19]]
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III. THE AUTOMATED TESTING FRAMEWORK

The evaluation of Couchbase Server Community Edition
7.0.0 that we present in this paper is driven entirely by an
automated testing framework built with Python 3.8. The tests
on which we report are run by the framework against a
Couchbase Server cluster running on AWS EC2 infrastructure
— specifically five Ubuntu 20.04 “t2.xlarge” instances with
public addresses enabled. The framework uses the combined
power of the Couchbase Server Python 3 software develop-
ment kit (SDK) and the Couchbase command line interface
(CLI) to automatically manage, respectively, both 1) data
operations and 2) cluster configuration. These two types of
management are handled, respectively, with a Data Manager
class and a Cluster Manager class, each written with Python.
The Couchbase Server Python 3 SDK (version 3.1.3) allows
the framework to perform data operations rapidly using a high-
performance C library called ‘libcouchbase‘ which communi-
cates to the cluster over Couch- base’s binary protocols. The
Couchbase Server command line interface (CLI) is provided
to manage and monitor clusters, servers, vBuckets, XDCR
(cross datacenter replication), and so on; while the CLI was
not designed specifically for use with Python, we choose to
use Python to trigger the shell CLI commands such that all
data and configuration operations are wrapped and abstracted
in the Python framework.

A. Execution Overview

While Couchbase Server does offer a genuinely easy-to-use
web interface for managing data and cluster configuration, we
wanted to eliminate the need for manual interaction in this
performance evaluation. The framework was built such that the
only prerequisite to running it is providing your AWS access
key ID and secret access key in an environment file, and then
“provisioning” (with one command) a Vagrant virtual machine
with an Ansible[HM17] master playbook.

The following outlines the primary steps executed when the
framework is triggered to run:

1) A local virtual machine is spun up with Vagrant, and is
provisioned with an Ansible[HM17]] master playbook

2) The master playbook automatically provisions five
Ubuntu 20.04 “t2.xlarge” EC2 instances with public
addresses enabled (in addition to private VPC addresses)
and installs the Couchbase Server software on each of
the instances.

3) After the EC2 instances are provisioned, the playbook
kicks off a framework driver script

4) Depending on arguments passed to the driver, the driver
uses some combination of the DataManager, the Cluster-
Manager, and the YCSB CLI to automatically configure
various clusters and run workloads against them (as it
does this, it also writes latency data for each operation
to an output file)

5) After the workloads are finished running, the driver uses
the output data files to generate plots, many of which
are included in this paper

This framework’s modular architecture will enable us to
extend it to other testing conditions with minimal effort, some
of which are discussed in section [V]

1V. EVALUATION

In this evaluation, we are interested in evaluating the impact
of database size (controlled by record counts, field sizes, field
counts), operation type ratios (e.g., read/insert/update ratios),
request distributions, and cluster architecture (homogeneous
versus heterogeneous service layouts) on the tail latency of
key data operations on a Couchbase cluster of five nodes. The
testing is separated into the following two phases:

o In phase one, we use a fixed cluster size of five nodes
with a homogeneous service architecture. With these
variables holding as constants, we use YCSB to analyze
the impact (on tail latency, specifically) of other variables
that are easy to tune via YCSB such as record (document)
counts, field sizes, field counts (document sizes), request
distributions (explained in subsection [V-A2), and ratios
between different operation types (i.e., read vs. write).

e In phase two, we again use a fixed cluster size of
five nodes, but this time with focus on heterogeneous
service architectures, with service layout and operation
type acting as independent variables such that we can
understand how the tail latency of each operation type
changes as certain services are scaled horizontally (within
the constraints of Couchbase Community Edition 7.0).

A. Phase One Test Plan: Using the YCSB Framework

As briefly mentioned in subsection the YCSB frame-
work supports a wide range of workloads, which can either be
defined ahead of time in static configuration files or at runtime
by passing arguments to the YCSB executable, which provides
a lot of flexibility through various parameters. In this project,
the following parameters are picked to investigate their impact
on the tail latency.



1) Database Size: The YCSB framework is generally sep-
arated into three steps on the client side [Coo+10]:

o The Load phase, where the data are loaded into the
database system

o The Run phase, where workloads are issued to the
database system

o The Report phase, where the performance statistics are
printed to the screen or output to a designated location

During the load phase, the size of the documents and the
number of documents can be controlled to determine the
overall size of the database. By default, each document has 10
fields and each field is 100 bytes long, making each document
1KB. In this evaluation, we tune the values of the following
sizing parameters to gauge their impact on the tail latency of
different operations:

e Record count; this is the number of documents inserted
into the database. We test values of 1K, 10K, and 100K
for this parameter.

o Field count; this is the number of fields, or keys, in
each document. We test values of 10 and 500 for this
parameter.

o Field length; this is the size, in bytes, of each field in
each document. We test values of 10 and 100 for this
parameter.

Table [I] depicts the overall database sizes resulting from
the various combinations of the above values. Note that for
the YCSB tests, we use a constant memory quota of 256MB
for our test bucket. This means that Couchbase will need
to optimize performance by ejecting data from memory to
disk based on its least recently used algorithm for four of
the database sizes in the table (500MB, 100MB, 500MB, and
5GB) since they exceed the 256MB memory quota.

Database Sizes
Record Count | Field Count | Field Length Size
1000 10 10B 100KB
1000 10 100B IMB
1000 500 10B SMB
1000 500 100B 50MB
10000 10 10B IMB
10000 10 100B 10MB
10000 500 10B 50MB
10000 500 100B 500MB
100000 10 10B 10MB
100000 10 100B 100MB
100000 500 10B 500MB
100000 500 100B 5GB

TABLE I: Database sizes as the products of record count, field
count, and field length

2) Request Distribution: During the run phase, the YCSB
framework randomly chooses from the documents that were
previously loaded during the load phase to conduct read or
write operations [Coo+10|]. This decision is controlled by
random distributions and YCSB has the following built-in
distributions that will be tested:

o Uniform, where all records in the database are equally
likely to be chosen.

e Zipfian, where some records are extremely like to be
chosen (also known as the head of the distribution) and
the probability rapidly decreases from these records (also
known as the tail of the distribution).

o Hotspot, where some percentage of the data items are
accessed by some percentage of the operations

3) Read/Write Proportions: During the run phase, the
YCSB framework must decide which operation to perform
when, as constrained by user-defined arguments for “pro-
portions” of the different operations. In this test, we define
nine different operation proportions and analyze them in
conjunction with the other discussed variables in order to study
how, or if, ratios between operation types impacts overall tail
latency of a Couchbase system.

« Read-heavy

— 100% read
— 90% read, 10% insert
- 90% read, 10% update

o Write heavy

100% insert
100% update
10% read, 90% insert
10% read, 90% update

o Equal read-write

— 50% read, 50% insert
— 50% read, 50% update

4) The Test Algorithm: The test automation is structured as
a nested loop, where each level of the loop represents one of
the parameters.

The following pseudocode outlines, at a high level, the
testing approach for this phase.

Algorithm 1 YCSB Test Automation Driver

createtHomogeneousCluster(nodeCount=5)
opProps = [list of r/u/i proportions]
requestDists = [uniform, zipfian, hotspot]
recordCounts = [1K, 10K, 100K]
fieldCounts = [10, 500]
fieldLengths = [10, 100]
for each rc € recordCounts do
for each fc € fieldCounts do
for each fl € fieldLengths do
for each rd € requestDists do
for each prop € opProps do
bucket = createBucket(bucketSize)
13: yesb(re, fe, fl, rd, prop, bucket)
14: end for
15: end for
16: end for
17: end for
18: end for
19: generatePlots() /I build plots with written data
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B. Phase One Test Results

In this section we provide the results obtained from the
execution of the testing framework in phase two, organized
by the various relationships we were intending to analyze.

1) Field Count vs. Tail Latency: As seen in Figure [5] the
number of fields in each document in the Couchbase database
ultimately did not really impact the tail latency of the insert
operation - the same is true for the update operation. The
reason for this is that when testing with YCSB, we used a
constant value of False for both the persistTo and replicateTo
parameters, such that YCSB would not enforce any strict data
durability requirements during the write operations. That is,
since we were not requiring each write operation to replicate
or persist data across the 5-node cluster, our writes were fast
regardless of the number of fields. However, as seen in Figure
[6l there does appear to be a positive correlation between
field count and read latency. This indeed makes sense simply
because larger documents imply greater usage of memory,
which in turn implies greater likelihood of ejecting data to
disk. Couchbase’s impressive performance largely comes from
its automatic management of a “caching layer”, which comes
down to keeping as much data in memory as possible with
minimal disk interactions, where the memory quota can tuned
at the bucket level; we tuned our test bucket with a memory
quota of 256MB. We can see from Table [I| that the largest
database size for a field count of 10 is 100MB, which is
less than 50% of our bucket memory quota, which means
there should have been no need for ejection. However, for
a field count of 500, the largest overall database size is
5GB, which far exceeds our memory quota for the bucket,
guaranteeing ejection of some data to disk. Thus, many of the
read operations on documents with a field count of 500 had
to go all the way to disk to get data that wasn’t available in
memory, resulting in higher tail latencies.

Fig. 5: Field count impact on insert tail latency in Couchbase
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Fig. 6: Field count impact on read tail latency in Couchbase
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2) Field Length vs. Tail Latency: As was the case in sub-
section field length did not impact the tail latencies of
the write operations because without durability requirements
of replication and persistence, the speed of write operations
are largely indifferent to document size variations. As seen in
Figure [/} the read operation tail latency was heavily impacted
by the field length. Of course, field length is yet another way
of changing the document size, and thus the overall database
size, so it is guaranteed to have a positive correlation with
the likelihood of ejecting data to disk due to memory quota
consumption, which implies a positive correlation with read
latency.

Fig. 7: Field length (bytes) impact on read tail latency in
Couchbase
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3) Record Count vs. Tail Latency: Similar to the case
in subsections [TV-B1| and [[V-B2] the tail latency of the




write operations (update and insert) were not significantly
impacted by modifying the record (document) count, for the
same reason: changing the database size does not change the
durability requirements enforced in write operations. This lack
of correlation is depicted in Figures [§ and [0] The tail latency
of the read operation, however, was significantly positively
correlated with the increasing record count. As the number
of documents in the database grows, so does the usage of
the available memory quota, which increases the likelihood of
ejecting data to disk; because of this, a greater proportion of
read operations must go all the way to disk to read data since
it is no longer in memory. The natural result is higher tail
latencies for the read operation with a larger number of stored
documents.

Fig. 8: Document/Record count impact on insert tail latency
in Couchbase
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4) Request Distribution vs. Tail Latency: While figures
[I1] [I2} and [I3] hint that there’s not a significant relationship
between request distribution and tail latency regardless of
operation type, it is worth noting that YCSB’s “zipfian” request
distribution does seem to offer around 40% lower latency
for the update operation specifically. With the zipfian request
distribution, some data items (called a “hotspot”) have a
greater probability to be targeted by operations than other
items. We can make sense of the lower 99.99th percentile
for zipfian if we consider that a random “hotspot” could, by
chance, align with the “active set” — that is, the set of data
items currently in the Couchbase Cluster memory as opposed
to disk. In other words, zipfian could randomly choose the
ideal set of data items to operate on such that few or none of
them have been ejected to disk.

5) Operation Proportion vs. Tail Latency: This particular
test yielded results that are both interesting and perhaps the
least insightful. As shown in Figures [T4] and [T3] in which the
X axis labels are formatted as read ratio - update ratio - insert
ratio, the average 95th and 99th percentile latency across all

Fig. 9: Document/Record count impact on update tail latency
in Couchbase
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Fig. 10: Document/Record count impact on read tail latency
in Couchbase
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operations appear disconnected from whether a workload is
read-intensive or write intensive. First, the local minima appear
at 90% read-10% insert, 10% read-90% insert, and 100% read;
thus, it cannot be concluded from this data that either a read or
write-intensive workload provides lower overall tail latencies
for all operations. Moreover, the local maxima appear at 100%
update, 50% read-50% insert, 50% read-50% update, and 90%
read-10% insert; thus it cannot be concluded from the maxima
that either a read or write-intensive workload leads to higher
overall tail latencies for all operations.

C. Phase Two Test Plan: Heterogeneous Service Scaling

In this section we provide our phase two approach taken to
test the effect of multidimensional scaling on the tail latency



Fig. 11: Request distribution impact on insert tail latency in
Couchbase
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Fig. 12: Request distribution impact on update tail latency in
Couchbase
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of various operations in Couchbase. Unfortunately, we were
constrained to a limited set of test cases by the Community
edition of Couchbase, which requires that every node in a
given cluster runs one of three possible combinations of
services, listed below:

o data
e query, index, data
o FTS, query, index, data

Based on those requirements, the first thing to note is that
every node must run the data service. This means that the data
service could not be independently scaled from one to many
nodes. Also, since the query service cannot run independently,
in order to test the impact of scaling the query service, we

Fig. 13: Request distribution impact on read tail latency in
Couchbase
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needed to scale not just the query service from one to many
nodes, but the query, index, and data service grouped together
from one to many nodes, with the remaining nodes for each
iteration only running the data service. This same constraint
applies to the index service. As a result, the query and index
services could not be tested independently and thus the results
of the query service scaling tests are the same results for
the index service scaling test. Lastly, since the FTS (full text
search) service can not run independently, in order to test the
scaling of FTS, we needed to scale not just the FTS service
from one to many nodes, but the FTS, query, index, and data
services grouped together, with the remaining nodes for each
iteration only running query, index, and data. This in essence
means that all nodes are running query, index, and data for
all iterations, but only the FTS service is scaling horizontally
even though it is tied to the other services. In short, we are
only able to test the impact of scaling FTS, query, and index,
where the testing for query and index is essentially duplicated.

Our driving test algorithm for testing the impact of mul-
tidimensional scaling on the tail latency of each operation is
shown in Algorithm [2| Unlike the tests in the previous phase,
this driving algorithm is only one flat loop rather than a nested
one.

D. Phase Two Test Results

1) FTS Scaling vs. Operation Latency: As seen in Figures
and [T8]scaling the FTS service beyond one node to two
significantly reduced the top percentile latencies for the insert,
update, and FTS operations. However, there appears to be a
slight spike (local maximum) in tail latency for the update,
delete, and FTS operations when FTS is running on three of
the five nodes. Since three happens to be the first number
allowing for the existence of a quorum, this could be related



Fig. 14: Operation Proportion vs Average 95th Percentile
Latency Across All Operations
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to the way Couchbase handles cluster metadata management
using the Chronicle consensus algorithm.

2) Query & Index Scaling vs. Tail Latency: As mentioned
in subsection the impact of scaling the query and index
services could not be tested independently due to their inter-
dependence in Couchbase Server. So, this subsection should
be interpreted as a discussion of the impact of scaling both
the query and index service together. In Figures [23] and [25}
we see a similar maximum in top-percentile latencies for the
update and N1QL query operations when the query and index
services are running on three of the five nodes. For the FTS
operation in Figure we see a consistent, gradual decline in
tail latency as the query and index services scale horizontally,
and we see an even sharper decline in the tail latency of the
delete operation, which essentially bottoms out once the query
and index services are running on two nodes. It appears from
Figure that there is the the least amount of correlation
between the scaling of query and index and the tail latency
of the insert operation. When one considers that the primary
service responsible for the insertion of new documents by key
into the database is the data service and not the query or index
service, this lack of correlation can be expected. Moreover, the
consistent decline in the FTS tail latency with the scaling of

Fig. 15: Operation Proportion vs Average 99th Percentile
Latency Across All Operations
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the query and index service aligns with the documentation
that states that the query service is responsible for performing
scan operations on relevant search indexes in order to serve
FTS queries; adding more of what’s serving the queries should
indeed have a positive impact on query latency.

V. UNRESOLVED PROBLEMS & FUTURE WORK

While we were able to capture a number of key metrics in
this evaluation of Couchbase, we have a couple of items we
were hoping to include in the evaluation but were unable to
due to time constraints. We outline them below.

1) Replication Count Impact On Operation Latency: In
this evaluation, the number of replications is not treated as a
variable. It is expected as data replication requirements change,
the tail latency of write operations would change as well
since all mutations would need to be streamed to the replicas.
Coupled with different durability settings (i.e., Couchbase’s
majority, majorityAndPersistToActive, and persistToMajority
durability configurations), the impact could be even more
substantial. For example, for a cluster of a given size, how
does changing the number of required replications from one
to three affect the tail latency of the insert operation for each of
the three main durability configurations? With more replication



Algorithm 2 Service Scaling Test Driver

CLUSTERSIZE =5

DURABILITY = ‘medium’

BUCKETSIZE =200 // num docs

bucket = createBucket(BUCKETSIZE)

serviceLayouts = getServiceLayouts()

for each slayout € serviceLayouts do

setupHeterogeneousCluster(slayout)

flushBucket(bucket) // clean slate
runlnserts(bucket,...) /] write latencies
runN1QLSelects(bucket,...) // write latencies
runFTS(bucket,...) /] write latencies
runUpdates(bucket,...) /] write latencies
runDeletes(bucket,...) /| write latencies
flushBucket(buckete,...) // clean slate

end for

. generatePlots() I/ build plots with written data
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Fig. 16: Effect of Scaling FTS Service on FTS Operation
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and stronger durability settings, the cluster is more resilient in
case of failures, but is it worth the expected increase in write
tail latencies that could impact the customer experience?

2) Node Failover Impact on Operation Latency: Another
item we did not address in the evaluation is the impact of
node failover on the latency of the different operation types.
More specifically, we wanted to generate a line graph (for
each operation type) of the operation latencies (for, say, 100
operations) over time, during which a node was “gracefully”
failed over (one of the two main node failover types offered
by Couchbase Server, the other being “hard”) while those
operations were executing. The expected result would be a
spike in the latency at the time of node failover. However, a
key consideration with a test like this is that due to the vBucket
partitioning within Couchbase as discussed in section [[I] an
operation will only be affected if the node being failed over
holds the active data on which the that operation is executing.
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Fig. 17: Effect of Scaling FTS Service on Insert Operation
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Fig. 18: Effect of Scaling FTS Service on Update Operation

Effect of Horizontally Scaling Fts Service
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That is, if a data operation is executed on some key K, the hash
of that key points to a vBucket which belongs to some node
N based on the cluster map, and the latency of that operation
should only be affected if N is the one being intentionally
failed over. Since our framework already includes both a
Cluster Manager component and a Data Manager component
as described in section [[I] it currently offers the capacity to
run this kind of test, but it has not yet been implemented.

3) Work Load Condition of the Server: In this evaluation,
the EC2 instances run only the Couchbase Server software.
However, in a real-world application, cluster nodes may run
a number of applications, which may introduce a series of
background activities that may execute irregularly and cause
resource contentions on the server, resulting in performance
degradation for one or all applications involved. Therefore, we



Fig. 19: Effect of Scaling FTS Service on Delete Operation
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Fig. 20: Effect of Scaling FTS Service on N1QL Query
Operation

Effect of Horizontally Scaling Fts Service
on N1glselect Operation Tail Latency in Couchbase
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have planned but not yet implemented an approach for testing
the effect of daemon processes on Couchbase operations. The
plan is to spawn up a certain docker container that will
consume a certain percentage of available CPU while making
all other variables like cluster size, database size, and service
layout constant, and analyze the daemon process’s impact on
the tail latency of different operation types.

4) Instance Type: In this evaluation, we are hosting our
Couchbase cluster on a set of virtual machines provisioned
with AWS EC2, a service that provides many configuration
options around networking, volume storage, resource alloca-
tion via selection of instance types, and more. In this analysis
we use the “t2.xlarge” instance type, as it meets the hardware
requirements specified by Couchbase documentation. How-
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Fig. 21: Effect of Scaling Query & Index Services on FTS
Operation
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Fig. 22: Effect of Scaling Query & Index Services on Insert
Operation
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ever, we remain interested in plotting the relationship between
EC2 instance types and tail latencies of Couchbase data
operations; we know horizontal scalability is a big advantage
of Couchbase, but how does it respond to vertical scaling?
Of course, the general expectation is that the more powerful
the instance type, the smaller the tail latency (not to mention
the guaranteed EC2 price change). We would also expect the
existence of an inflection point at which vertical scaling no
longer results in a significant reduction in tail latency. Also,
that expected inflection point is likely different for different
workloads. For each real-world application, there must exist
some optimal set of instance types for a Couchbase cluster. If
you can plot cost increase and tail latency decrease along a



Fig. 23: Effect of Scaling Query & Index Services on Update
Operation
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Fig. 24: Effect of Scaling Query & Index Services on Delete
Operation
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change in instance type configurations for a cluster, then you
can identify the point at which the tail latency’s negative slope
is no longer steeper (if it ever is, that is) than the cost increase’s
positive slope; that is the inflection point where vertical scaling
is not worth the money.

VI. CONCLUSION

Our goal with this study was to take Couchbase Server —
an open-source, document-oriented, multi-model, distributed
NoSQL database riding the wave of next-gen database systems
— and gain an understanding of its multitude of configurable
properties and how they interact with each other, and more
importantly, how they combine to impact the tail latencies of
key operations such as reads, insertions, updates, and deletions.

Fig. 25: Effect of Scaling Query & Index Services on N1QL
Query Operation
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We approached this goal with a strong focus on automation
such that we could fine-tune and gauge a number of different
settings without much overhead. This project, which makes
heavy use of orchestration tools like Ansible and Vagrant in
conjunction with cloud infrastructure via AWS EC2, combines
experiences and perspectives from the rich arenas of both
distributed systems and cloud computing, and rests on the
shoulders of other open source giants who contributed frame-
works like YCSB that allowed entire phases of this evaluation
to be executed.
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